The Role of Information Technology in Improving Transit Systems

by Nigel Wilson MIT

OUTLINE

- Key Automated Data Collection Systems (ADCS)
- Key Transit Agency/Operator Functions
- Impact of ADCS on Functions
- Traditional Relationships Between Functions
- State of Research/Knowledge
- Examples of Recent Research
- Emerging Research Possibilities
- Remaining Challenges

Transit Agencies Are at a Critical Transition in Data Collection Technology:

<u>Manual</u>

- low capital cost
- high marginal cost
- small sample sizes
- aggregate
- unreliable
- limited spatially and temporally
- not immediately available

Automatic

- high capital cost
- low marginal cost
- large sample sizes
- more detailed, disaggregate
- errors and biases can be estimated and corrected
- ubiquitous
- available in real-time or quasi real-time

Key Automated Data Collection Systems

- Automatic Vehicle Location Systems (AVL)
 - bus location based on GPS
 - train tracking based on track circuit occupancy
 - real-time availability of data
- Automatic Passenger Counting Systems (APC)
 - bus systems based on sensors in doors with channelized passenger movements
 - passenger boarding (alighting) counts for stops/stations with fare barriers
 - train weighing systems to estimate number of passengers on board
 - traditionally not available in real-time
- Automatic Fare Collection Systems (AFC)
 - increasingly based on contactless smart cards with unique ID
 - provides entry (exit) information (spatially and temporally) at the individual level
 - traditionally not available in real-time

ADCS - Potential and Reality

Potential

- Integrated ADCS database
- Models and software to support many agency decisions using ADCS database
- Providing insight into normal operations, special events, unusual weather, etc.
- Provide large, long-time series disaggregate panel data for better understanding of travel behavior

<u>Reality</u>

- Most ADCS systems are implemented independently
- Data collection is ancillary to primary ADC function
 - AVL emergency notification, stop announcements
 - AFC fare collection and revenue protection
- Many problems to overcome:
 - not easy to integrate data
 - requires substantial resources

Key Transit Agency/Operator Functions

- Service and Operations Planning (SOP)
 - Network and route design
 - Frequency setting and timetable development
 - Vehicle and crew scheduling
 - Off-line, non real-time function
- Service and Operations Control and Management (SOCM)
 - Dealing with deviations from SOP, both minor and major
 - Dealing with unexpected changes in demand
 - Real-time function

Transit Service Delivery Process*

* Source: "Diagnosis and Assessment of Operations Control Interventions: Framework and Applications to a High Frequency Metro Line." MST Thesis, André Carrel; MIT, 2009.

Key Transit Agency/Operator Functions (cont'd)

- Customer Information (CI)
 - Information on routes, trip times, vehicle arrival times, etc.
 - Both static (based on SOP) and dynamic (based on SOP and SOCM)
 - Both pre-trip and en-route
- Performance Measurement and Monitoring (PMM)
 - Measures of operator performance against SOP
 - Measures of service from customer viewpoint
 - Traditionally an off-line function

Impact of ADCS on Functions

IMPACT ON SOP

- AVL: detailed characterization of route segment running times
- APC: detailed characterization of stop activity (boardings, alightings, and dwell time at each stop)
- AFC: detailed characterization of fare transactions for individuals over time, supports better travel behavior modeling

IMPACT ON SOCM

• AVL: identifies current position of all vehicles, deviations from SOP

IMPACT ON CI

- AVL: supports dynamic CI
- AFC: permits characterization of normal trip-making by each individual, supports active dynamic CI function

IMPACT ON PMM

- AVL: supports on-time performance assessment
- AFC: supports passenger-oriented measures of travel time and reliability

Traditional Relationships Between Functions

- SOP serves as the basis for both SOCM and CI
- Reasonable as long as SOP is sound and deviations from it are not very large
- Input data to the SOP has improved as a result of ADCS
- Fundamentally a static model in an increasingly dynamic world

Service Planning Hierarchy

Network Design Frequency Setting Timetable Development Vehicle Scheduling Crew Scheduling

Frequent Decisions

Cost Considerations Dominate Computer-Based Analysis Dominates

State of Research/Knowledge in SOP

- Advanced in vehicle and crew scheduling (operations planning)
- Limited in past by weak data, less of a problem now
- Limited in service planning: rules of thumb and experience still dominate
- Much research has been simplistic in terms of formulation of objectives and constraints
- Inadequate recognition of uncertainty in model formulation
- Substantial opportunities remain for better models

State of Research/Knowledge in SOCM

- Advances in train control systems help minimize impacts of small incidents
- Major disruptions still handled in individual manner based on judgement and experience of the controller
- Little effective decision support for controllers
- Models suffer from deterministic formulations of highly stochastic systems
- Simplistic view of objectives and constraints in model formulation
- Substantial opportunities remain for better models

Rail Operations Controllers Decision Factors

- These factors can trigger service control interventions or place constraints on interventions performed for other reasons
- Conflicts between objectives are frequent
- How can we best coordinate and integrate these objectives and constraints?

Source: "Diagnosis and Assessment of Operations Control Interventions: Framework and Applications to a High Frequency Metro Line." MST Thesis, André Carrel; MIT, 2009.

State of Research/Knowledge in Cl

- Next vehicle arrival times at stops/stations well developed and increasingly widely deployed
- Pre-trip journey planner systems widely deployed but with limited functionality in terms of recognizing individual preferences
- Strongly reliant on veracity of SOP
- Ineffective in dealing with major disruptions

Evolution of Customer Information

- Operator view --> customer view
 - route-based --> OD-based
- Static --> dynamic
 - based on SOP --> based on SOP modified by current system state and control actions
- Pre-trip and at stop/station \rightarrow en route
- Generic customer \rightarrow specific customer
- Request-based systems \rightarrow Anticipatory systems
- Agency/operator developed systems → "App" developers using real time data feeds from agency

State of Research/Knowledge in PMM

- Generally takes the operator rather than customer perspective
 - route- or stop-based measures rather than OD pairs measures
 - lack of effective measures of reliability
 - lack of recognition of non-linear response in terms of customer satisfaction
- Based on achieving SOP as ultimate goal

Examples of Recent MIT Research Based on ADCS

Service and Operations Planning

- Trip chaining to estimate OD matrix
- Travel behavior analysis

Service and Operations Control and Management

- Operations control on metro line (LUL Central Line)
- Estimation of train level passenger loads (LUL Lines)

Planning and Performance Monitoring

Reliability metrics (LUL and LO)

Public Transport OD Matrix Estimation

Objective:

- Estimate passenger OD matrix at:
 - single route level
 - network level

Network attributes:

- multi-modal rail and bus systems
- entry-control-only or entry+exit control operations

Sources:

"Bus Passenger Origin-Destination Matrix Estimation Using Automated Data Collection Systems." Alex Cui, MST Thesis, MIT, June 2006

"Bus Passenger Origin-Destination Estimation and Travel Behavior Using Automated Data Collection Systems in London, UK." Wei Wang, MST Thesis, MIT, June 2010

Trip Chaining: Basic Idea

Each AFC record includes:

- AFC card ID
- transaction type
- transaction time
- transaction location: rail station or bus route (time-matching with AVL data)

The destination of many trip segments (TS) is also the origin of the following trip segment.

Trip-Chaining Method for OD Inference

Key Assumptions for Destination Inference to be correct:

- No intermediate private transportation mode trip segment
- Passengers will not walk a long distance
- Last trip of a day ends at the origin of the first trip of the day

Trip-Chaining Method for OD Inference

Steps required:

- Infer start and end of each trip segment for individual AFC cards
- Link trip segments into complete (one-way) journeys for individual AFC cards
- Integrate individual journeys to form seed OD matrix by time period
- Expand to full OD matrix using available control totals
 - station entries and/or exits for rail
 - passenger entries and/or exits by stop, trip, or period for bus

Summary Information on London Application

- Oyster fare transactions/day:
 - Rail (Underground, Overground, National Rail): 6 million (entry & exit)
 - Bus: 6 million (entry only)
- For bus:
 - Origin inference rate: 95%
 - Destination inference rate: 74%
- Computation time for full London OD Seed Matrix:
 - 12 mins on 2.8 GHz Intel 7 machine with 8 GB of RAM

Travel Behavior Analysis

Objective:

Estimate customer preferences for bus versus rail

Given:

- AFC address registration
- AFC transactions

Applications:

• **CTA**

Path Choice Analysis: Sample Users

- Multiple rail and bus routes serving the loop (CBD)
- Stiff competition between express bus and rail service

Path Choice Analysis: Access Distance

Intersection	bus	mixed	rail	Total
Belmont Station	2	4	73	79
Belmont/Orchard	20	9	83	112
Belmont/Sheriden	170	10	21	201

- Access Distance important: Belmont, Belmont/Sheriden
- Why are users in Belmont/Orchard not a better mix of Bus and Rail

Path Choice Analysis: Mode Preference

	User type (all daily trips)			
User type (first trip of day)	All Bus	All rail	Mixed	# customers
Bus	47%	0%	53%	658
Rail	0%	71%	29%	704
Mixed	0%	0%	100%	99
All users	21%	34%	44%	1461

- Sample comprise all users in 0.2 mile buffer
- 53% bus users also use rail (< 18% trips)
- 29% rail users also use bus (< 7% trips)

Reliability Metrics

Objective:

- Estimate measures of service reliability at:
 - OD level
 - Line level

Given:

- AFC transactions
- AVL data
- Timetable data

Applications:

- London Underground
- London Overground
- London Buses

Motivation

- Unreliability is seen as a widespread problem
 - Passenger impacts
 - Longer wait times
 - Need for trip time reliability buffer
 - More perceived crowding
 - Agency impacts:
 - Increased costs
 - Reduced ridership and revenue
 - Reduced operator morale
 - Public and political problem
 - Reduced effective capacity

Problem Complexity

- Reliability is not the only service dimension of value, also have:
 - Speed/trip time
 - Productivity
- Reliability means different things:
 - To different customers
 - On different services
- A single measure of effectiveness focused on reliability may lead to poor decisions

BUT

• We do need to measure performance *wrt* reliability

Different Service Types

- A. Low Frequency Service (typically defined as headways greater than 10-15 minutes)
 - Most customers time their arrival at stops/stations based on expected service departure times (e.g. schedule)
 - On-time performance is critical, for example:
 - 1 minute early to 5 minutes late
 - 0 minutes early to 3 minutes late
 - 0 minutes early to 1 minutes late
 - Little interaction between successive vehicles

Different Service Types

B. High Frequency Service

- Most customers do not time their arrival at stops with service departures
- Expected wait time = F(mean and variance of headways)
- On-time performance not so critical
- Extensive interaction between successive vehicles:
 - Vehicle bunching
 - Long gaps

BUT

- Many high frequency routes have branches and short route variants
- So many customers may still behave like those on low frequency routes
- Schedule control is much easier than headway control.....

Reliability Metrics - Rail

High Frequency Service

• use tap-in and tap-out times to measure actual station-station journey times

RBT = 95th percentile travel time – median travel time

The additional time a passenger must budget to arrive late no more than 5% of the time

Reliability Metrics - Rail

 Aggregate to line level by distinguishing between "normal" and "incident days"

Source: David Uniman, MST thesis, MIT 2009. "Service Reliability Measurement Framework using Smart Card Data: Application to the London Underground."

Reliability Metrics - Rail

Low-Frequency Service

- compare actual journey times with scheduled times
- compare actual journey times

Source: Michael Frumin, MST thesis, 2010 "Automatic Data for Applied Railway Management: Passenger Demand, Service Quality Measurement, and Tactical Planning on the London Overground Network."

Reliability Metrics - Bus

In contracted service delivery context, need to distinguish between:

- A. Contractor performance: measure against contracted service expectations
- B. Performance as seen by passenger

If service is unreliable, <u>the passenger</u> doesn't care whether the problem was caused by traffic or poor operator behavior, but <u>the authority</u> must be sure which caused the problem.

Reliability Metrics - Bus

Challenge to measure passenger journey time because:

- (typically) no tap-off, just tap-on
- tap-on occurs <u>after</u> wait at stop, but wait is an important part of journey time

Strategy to use:

- trip-chaining to infer destination for all possible boardings
- AVL to estimate:
 - average passenger wait time (based on assumed passenger arrival process)
 - actual in-vehicle time

