Assessing the Performance of BRT Systems: Econometric Modelling and Case Studies

Project LS1

David A. Hensher Corinne Mulley Institute of Transport and Logistics Studies The University of Sydney Business School The University of Sydney

> January 2012 BRT Centre Executive Board, TRB Washington DC

> > BUS RAPID TRANSIT

Obj 1: Review and evaluate methodological approaches within which to quantify the salient factors that define the dimensions of performance of BRT systems

Completed

Obj 2: Identify and review existing data sources to identify gaps in data needs, and a data collection strategy to obtain all necessary data

Completed

Obj 3: to set out the selected method in sufficient detail so as to ensure that it is capable of estimation so as to deliver an agreed set of performance metrics

Completed

Obj 4: to undertake model estimation of data from secondary sources, including compilation of very detailed data for selected systems as the basis of case studies

Ongoing but subject to Data Concerns

Obj 5: to use the evidence to define criteria for selecting BRT systems that should be included by invitation as members of a 'BRT cities club'.

Not Commenced

- Identifed the influencing dimensions within a framework broadly distinguising internal and external factors.
 - The external factors emphasised the institutional, cultural, geographic influences including evidence on modal biases present in the population as a whole and key stakeholders.
- Identified key externalities (noise, congestion, safety, emissions) and how they should be sourced and measured and built into the performance assessment framework.

- Commencement of Detailed Case Studies of three Australian Busway Systems (Liverpool-Parramatta and Rouse Hill to Parramatta/Blacktown Transitways in Sydney and the Brisbane Busway System).
- Working closely with Embarq and PUC to resolve concerns about adequacy (inadequacy) of data items in the initial 71, and later 121, corridor observations
- Set up data files for econometric modelling and data dictionary for 121 corridors
- Undertook extensive modelling to understand data better with focus on passenger demand and service frequency (see initial models in later slides)
- > Special emphasis on lack of quality data, especially on key data including
 - Operation costs (annual) and Infrastructure costs
 - Feedkm, peakload, nopass, lonlocc, nostatns, disbwsta, notrunk, fr phspeed (defined on next slide)

Critical Data with Missing observations out of 121

- > Feedkm = Total length of all existing bus feeder routes (km) (46)
- > Peakload = Peak load of the corridor (passengers/h/direction) (74)
- > Nopass = Total passenger corridor demand per day (pass/day) (49)
- > Lonlocc = Longitudinal location of contra-flow bus lanes (109)
- > Nostatns = Number of stations along the corridor (30)
- > Disbwsta = Average distance between stations (metres) (29)
- > Notrunk = Number of trunk lines (17)
- > Frequn = Frequency (bus/h/direction) (49)
- > Phspeed = Average commercial speed during peak hour (km/h) (59)

BUS RAPID TRANSIT

- > Due to inadequacy of data, the only models we have been able to estimate that make sense (to date) are given below in next two slides.
- In addition, we have compiled separate data set of 46 bus rapid transit systems: Hensher, D.A. and Li, Z. Ridership Drivers of Bus Rapid Transit Systems, submitted to *Transportation*, 29 September 2011.
- From a large number of candidate explanatory variables (quantitative and qualitative), 11 sources of systematic variation are identified by Li and Hensher (2011), which have a statistically significant impact on daily passenger-trip numbers.
- > These sources are:
 - fare, headway, the length of the BRT network, the number of corridors, average distance between stations; whether there is: an integrated network of routes and corridors, modal integration at BRT stations, preboard fare collection and fare verification, quality control oversight from an independent agency, at-level boarding and alighting, as well as the location of BRT.

Ordinary	least squares regres	sion	
LHS=LPASS	Mean	=	11.69954
	Standard deviation	=	1.08862
	Number of observs.	=	52
Model size	Parameters	=	5
	Degrees of freedom	=	47
Residuals	Sum of squares	=	17.2388
	Standard error of e	=	.60563
Fit	R-squared	=	.71478
	Adjusted R-squared	=	.69050
Model test	F[4, 47] (prob)	=	29.4(.0000)
White heteros	scedasticity robust c	ovari	ance matrix.
Br./Pagan LM	Chi-sq [4] (prob)	= 1	1.34 (.0230)
Model was est	timated on Dec 07, 20	11 at	04:06:16 PM

THE UNIVERSITY OF

LPASS	Coefficient	Standard Error	t	Prob. t >T*	95% Cor Inte	ifidence erval	
Constant	6.62361***	.53279	12.43	.0000	5.57936	7.66786	-
Natural 1	og of corridor l	ength in bot	h direct	ions (km)			
LCOLENGT	.32038***	.09581	3.34	.0016	.13259	.50816	
Number of	f trunk lines						
NOTRUNK	.00654***	.00185	3.53	.0009	.00291	.01017	
Natural log of frequency (buses per hr per direction)							
LFREQUN	.87759***	.09234	9.50	.0000	.69661	1.05857	
Preboard	fare collection	(1,0)					
PREBOARD	.75625***	.22534	3.36	.0016	.31460	1.19791	

Natural Log of Frequency (Buses per hour per direction) (61 of 121 obs., a loss of 60 due to missing data)

LHS=LFREQUN Mean = 4.09419 Standard deviation = 1.16816 Number of observs. = 61 Model size Parameters = 8 Degrees of freedom = 53 Residuals Sum of squares = 26.2172 Standard error of e = .70332 Fit R-squared = .63750 Model test F[7, 53] (prob) = 16.1(.000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq[7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM 	Ordinary	least squares	s regression					
Standard deviation = 1.16816 Number of observs. = 61 Model size Parameters 8 Degrees of freedom = 53 Residuals Sum of squares = Standard error of e = .70332 Fit R-squared = Residuals Standard error of e = .67979 Adjusted Resquared = .663750 Model test F[7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM	LHS=LFREQUN	Mean	=	4.	09419			
Number of observs. = 61 Model size Parameters = 8 Degrees of freedom = 53 Residuals Sum of squares = 26.2172 Standard error of e = .70332 Fit R-squared = .62750 Model test F(7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM		Standard dev	iation =	1.	16816			
Model size Parameters = 8 Degrees of freedom = 53 Residuals Sum of squares = 26.2172 Standard error of e = .70332 Fit R-squared = .63750 Model test F[7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan IM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM		Number of obs	servs. =		61			
Degrees of freedom = 53 Residuals Sum of squares = 26.2172 Standard error of e = .70332 Fit R-squared = .63750 Model test F[7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagn LM Chi-sq[7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM 	Model size	Parameters	=		8			
Residuals Sum of squares = 26.2172 Standard error of e = .70332 Fit R-squared = .67979 Adjusted R-squared = .63756 Model test F[7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM 		Degrees of fi	reedom =		53			
Standard error of e = .70332 Fit R-squared = .63750 Model test F[7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 FM	Residuals	Sum of square	es =	26	.2172			
Fit R-squared = .63750 Model test F(7, 53) (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM IPREQUAL Coefficient LTFREQUAL Coefficient Error LTPREQUAL Coefficient Error LTPREQUAL Coefficient Error Constant 2.89196*** .42924 6.74 Natural log of population density LPOPDEN .12518*** .03778 3.31 .0017 .05114 .19922 Number of trunk lines NOTRUNK! .00799** .00385 2.08 .0427 .0045 .0589 1.00738 Preboard fare collection (1,0) PREBOARD! 62067*** .22760 -2.73 .0086 -1.06676 .01000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. <td></td> <td>Standard erro</td> <td>or of e =</td> <td></td> <td>70332</td> <td></td> <td></td> <td></td>		Standard erro	or of e =		70332			
Adjusted R-squared = .63750 Model test F[7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM	Fit	R-squared	=		67979			
Model test F[7, 53] (prob) = 16.1(.0000) White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 FM		Adjusted R-so	quared =		<mark>63750</mark>			
White heteroscedasticity robust covariance matrix. Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM	Model test	F[7, 53]] (prob) =	16.1(.	0000)			
Br./Pagan LM Chi-sq [7] (prob) = 5.42 (.6087) Model was estimated on Dec 07, 2011 at 04:05:37 PM	White hetero	scedasticity a	robust covar:	iance ma	trix.			
Model was estimated on Dec 07, 2011 at 04:05:37 PM	Br./Pagan LM	I Chi-sq [7]	(prob) =	5.42 (.	6087)			
Standard Prob. 95% Confidence LFREQUN Coefficient Error t t >T* Interval Constant 2.89196*** .42924 6.74 .0000 2.05067 3.73324 Natural log of population density LPOPDEN .12518*** .03778 3.31 .0017 .05114 .19922 Number of trunk lines NOTRUNK .00799** .00385 2.08 .0427 .00045 .01554 Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor <td>Model was es</td> <td>timated on Dec</td> <td>c 07, 2011 at</td> <td>t 04:05:</td> <td>37 PM</td> <td></td> <td></td> <td></td>	Model was es	timated on Dec	c 07, 2011 at	t 04:05:	37 PM			
Standard Prob. 95% Confidence LFREQUN Coefficient Error t t >T* Interval Constant 2.89196*** .42924 6.74 .0000 2.05067 3.73324 Natural log of population density LPOPDEN .12518*** .03778 3.31 .0017 .05114 .19922 Number of trunk lines .00799** .00385 2.08 .0427 .00045 .01554 Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor	+							-
LFREQUN Coefficient Error t t >T* Interval			Standard		Prob.	95% Co	nfidence	
Constant 2.89196*** .42924 6.74 .0000 2.05067 3.73324 Natural log of population density LPOPDEN .12518*** .03778 3.31 .0017 .05114 .19922 Number of trunk lines NOTRUNK .00799** .00385 2.08 .0427 .00045 .01554 Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.0667617458 Natural log of maximum fare (\$US) LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.1773111434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	LFREQUN C	Coefficient	Error	t	t >1'*	Int	erval	
Constant 2.89395*** .42924 6.74 .0000 2.03067 5.73324 Natural log of population density LPOPDEN .12518*** .03778 3.31 .0017 .05114 .19922 Number of trunk lines .00799** .00385 2.08 .0427 .00045 .01554 Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) .0VERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	Constant	2 00106+++	42024	с ¬л		2 0 5 0 6 7	2 7 2 2 2 4	-
Natural log of population density LPOPDEN .12518*** .03778 3.31 .0017 .05114 .19922 Number of trunk lines NOTRUNK .00799** .00385 2.08 .0427 .00045 .01554 Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) .017769 OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	Constant	2.89196^^^	.42924	6.74	.0000	2.05067	3./3324	
Number of trunk lines .03778 3.31 .0017 .03114 .19922 Number of trunk lines .00799** .00385 2.08 .0427 .00045 .01554 Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) IMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. . TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) . . OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	I DODDENI	12510***	O2770	2 21	0017	05114	10022	
NOTRUNK .00799** .00385 2.08 .0427 .0045 .01554 Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) IMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) .0030 .24498 1.07769	Number of tr	.12J10	.03778	J.JI	.0017	.03114	.19922	
Fare integration to feeder system (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US)	NOTRINK	00799**	00385	2 0.8	0427	00045	01554	
FARE INTEGRATION to frequencies by steam (1,0) FAREINT .53814** .23942 2.25 .0288 .06889 1.00738 Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	Fare integra	tion to feeder	.000000 r system (1 (2.00 N	.0427	.00045	.01334	
Preboard fare collection (1,0) PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) IMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) .0030 .24498 1.07769	FAREINTI	53814**	23942	2 25	0288	06889	1 00738	
PREBOARD 62067*** .22760 -2.73 .0086 -1.06676 17458 Natural log of maximum fare (\$US) LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) .0030 .24498 1.07769	Preboard far	re collection	(1.0)	2.20	.0200	.00005	1.00700	
Natural log of maximum fare (\$US) LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.1773111434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769 	PREBOARDI	- 62067***	22760	-2 73	0086	-1 06676	- 17458	
LMAXFARE -3.72607*** .61811 -6.03 .0000 -4.93754 -2.51460 Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.1773111434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769 BUS RAPID TRANSIT	Natural log	of maximum fai	re (\$US)	2.70		1.00070	• 1 / 100	
Trunk lines with feeder routes: specific bus lines serving the corridor complemented by bus feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.1773111434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	LMAXFARE	-3.72607***	.61811	-6.03	.0000	-4.93754	-2.51460	
feeder routes to transfer stations or terminals. TRUKFEED 64583** .27117 -2.38 .0209 -1.1773111434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769 BUS RAPID TRANSIT	Trunk lines	with feeder ro	outes: speci:	fic bus	lines se	rving the c	orridor compl	Lemented by bus
TRUKFEED 64583** .27117 -2.38 .0209 -1.17731 11434 Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	feeder route	s to transfer	stations or	termina	ls.	2	-	-
Overtaking lanes at more than half of all stations along the heaviest section of the corridor (1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	TRUKFEED	64583**	.27117	-2.38	.0209	-1.17731	11434	
(1,0) OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	Overtaking 1	anes at more	than half of	all sta	tions al	ong the hea	viest sectior	n of the corridor
OVERLANE .66133*** .21243 3.11 .0030 .24498 1.07769	(1,0)							
	OVERLANE	.66133***	.21243	3.11	.0030	.24498	1.07769	
	+							BUS RAPID TRANSIT

- Data collection with high completion rate on the 'shallow' questionnaire for two transitway corridors:
 - Liverpool to Parramatta
 - Rouse Hill to Parramatta/Blacktown
- > Liverpool to Parramatta data provided to Observatory
 - High completion rate but required face to face contact with operator
 - Whilst not part of LT1, modelling of longer term land value uplift using Geographically Weighted Regression following the implementation of the Transitway with BRT is completed and modelling of land value changes using other methodologies is underway
- > Rouse Hill to Parramatta/Blacktown
 - Data collection in final stages of collection before submission to Observatory.
 - Again operator contact required but more difficult as Transitway involves two operators
 - Difficulties in applying a corridor based definition to this Transitway which has trunk and branch structure

- Data collection in progress for Busways in Brisbane (the most successful BRT in Australia). Hoping for a high (95+%) completion rate
- Meetings and follow up data collection undertaken with Brisbane Transport, the major operator on the BRT infrastructure
- Meeting and further work is now being undertaken with Translink, (who co-ordinate and deliver transport across the Brisbane and SE Queensland connurbation) to capture all the BRT using the infrastructure.
 - Data collection complicated by definitions of corridors as design is predicated on trunk and branch network
 - This makes estimation of 'corridor use' difficult
 - Operators concerned that the trunk and branch network is what has produced the high corridor use and want to ensure that the data is not taken out of context
- Discussions ongoing with the Department of Transport and Main Roads their input re: infrastructure costs

- Hensher, D.A. The relationship between bus contract costs, user perceived service quality and performance assessment, prepared for Thredbo 12, Durban, South Africa, September 2011, and submitted to *International Journal of Sustainable Transportation* special issue, January 12 2011, accepted 28 April 2011.
- Hensher, D.A. and Li, Z. Ridership Drivers of Bus Rapid Transit Systems, submitted to *Transportation*, 29 September 2011.

- We see the LS1 activity. begun in 2010. continuing throughout 2012 plus other elements of the objective set using the funding that has already been agreed.
- > Key activities in 2012 (as set out in LS1 Proposal 2010-2012):
 - Continue working with Embarq and PUC in the refinement of baseline data for studying the performance of 121 plus selective BRT systems (at a system level)
 - Continue modelling using data as it comes in, to establish a set of key performance indicators as a means of benchmarking all systems, and developing procedures to meaningfully compare operations given differences in operating environment, and what is and is not under the control of the operator, the regulator and the market.
 - Preparing case studies for two Australian BRT systems, noting that much of the data has been collected through interviews and survey instruments.

- Contribute to the framework for investigating stakeholder perceptions going wider than the original 'user' satisfaction measures (LT3)
- Develop guidelines, based on the modelling in LT1, as to the information that is needed in order to draw a proper comparison between BRT and its 'competitors' (namely metro and LRT)
- Note: LRT may be a problem since to date we (ITLS) have had difficulty in sourcing data.
- > But more fundamentally what are we comparing LRT with given limits of BRT data?
 - We suggest that Juan Carlos ask the meeting about this issue and where we might source data from.
 - However, even with LRT data, we may not be able to do a meaningful comparison given quality of BRT data base.

- Valuation of service reliability and crowding under risk and uncertainty: neglected drivers of demand for public transport
- > ARC-DP grant 2012-2014. The reliability of public transport services, and the amount of crowding at stations and also on trains and on buses, have come under strong criticism. This study identifies the role that improved service reliability and reduced crowding play in influencing the switch from car to public transport for the commute.
 - The research will develop a new set of demand-side behavioural specifications of the influence of crowding at stops/stations and in buses/trains that line up with supply side design definitions used in planning
 - We will suggest how travel time reliability (or time variability) and crowding are built into new modal choice models that include BRT as an alternative.
- We also plan to undertake an SQI survey on the Brisbane Busway system (we have external funding)

- Tirachini, A. and Hensher, D.A Multimodal transport pricing: first best, second best and extensions to non-motorised transport, *Transport Reviews*, Online 30 November 2011: DOI:10.1080/01441647.2011.635318
- Li, Z., Tirachini, A. and Hensher, D.A. Embedding Risk Attitudes in a Scheduling Model: Application to the Study of Commuting Departure Time, accepted for presentation at the 4th International Symposium on Transportation Network Reliability, July 22-23, 2010, at the University of Minnesota, McNamara Center, Minneapolis, to appear in Transportation Science, accepted 18 August 2011.
- Carrigan, A. Hensher, D.A., Hidalgo, D., Mulley, C, and Muñoz, J.C. (2011) The Complexity of BRT Development and Implementation, FUT 10 Years. VREF.
- > Hensher, D.A, and Wong, G. (2012) Different approaches to public transport provision, LTA Journeys, January.

- > Hensher, D.A. and Mulley, C. (drafted) High quality public transport: gaining acceptance of bus rapid transit systems, in *Handbook of Sustainable Travel: People, Society and Transportation Systems,* edited by Garling, T., Ettema, D. and Friman, M., Springer, Berlin.
- > Hensher, D.A., Truong, T.P., Mulley, C. and Ellison, R. Assessing the wider economy impacts of transport infrastructure investment with an illustrative application to the North-West Sydney rail project (full draft completed July 2011) submitted to *Journal of Transport Geography*, October 26 2011.
- Hensher, D.A., Mulley, C., and Smith, N. A., simplified bus contract payment formula, presented at the 12th International Conference on Competition and Ownership of Land Passenger Transport (*Thredbo 12*),Durban, South Africa September 2011. Latest version: 20 March 2011, submitted as 'Towards a simplified performance-linked value for money model as a reference point for bus contract payments' to *Research in Transportation Economics*, September 213, 2011.

BUS RAPID TRANSIT

The VreF BRT Team in Durban at Thredbo 12 (Note Dario's Smile)

