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a b s t r a c t

This article presents a route choice model for public transit networks that incorporates
variables related to network topology, complementing those found in traditional models
based on service levels (travel time, cost, transfers, etc.) and users’ socioeconomic and
demographic characteristics (income level, trip purpose, etc.). The topological variables
represent concepts such as the directness of the chosen route and user knowledge of the
network. For both of these factors, the necessary data is endogenous to the modelling pro-
cess and can be quantified without the need for information-gathering beyond what is nor-
mally required for building route choice models. Other novel variables in the proposed
formulation capture notions of user comfort such as vehicle occupancy rates and certain
physical characteristics of network stations. We conclude that these new variables signif-
icantly improve the explanatory and predictive ability of existing route choice
specifications.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this article is threefold: to advance our understanding of the behaviour of public transit users when choos-
ing a route in a transit network, to quantify the impacts of the underlying factors that influence their decisions, and to im-
prove the statistical inference and predictive ability of route choice models.

The route choice factors normally included in these models relate to the service levels of the route alternatives (e.g., in-
vehicle travel time, waiting time, access time, number of transfers, train passenger density, etc.) and the socioeconomic and
demographic characteristics of users (income level, purpose of trip, etc.) (Ortúzar and Willumsen, 2001).

However, there are good reasons to suspect the existence of other influences on the user’s route choice process that exist-
ing models generally ignore. With this possibility in mind, we propose a new model based on three main hypotheses:

1. Transit users tend to penalize routes that deviate from a direct path to the final destination along certain segments. In
other words, between two routes with exactly the same trip time, users prefer the most direct one, whether in geograph-
ical or topological (display map) terms.

2. Transit users tend to prefer routes that are better known or more heavily travelled.
3. Transit users consider different factors when choosing travel routes, besides traditional variables such as travel time or

fare. Some of these factors may include comfort, reliability or physical characteristics from the vehicles and stations.

To test the first hypothesis our model defines and incorporates a novel explanatory variable called angular cost to repre-
sent the underlying effects of route segment deviation on user route choice in a transit network. The function expressing this
. All rights reserved.

: +56 2 553 0281.
@ing.puc.cl (J.C. Muñoz), louis.degrange@udp.cl (L. de Grange).

http://dx.doi.org/10.1016/j.tra.2010.12.004
mailto:sraveau@puc.cl
mailto:jcm@ing.puc.cl
mailto:louis.degrange@udp.cl
http://dx.doi.org/10.1016/j.tra.2010.12.004
http://www.sciencedirect.com/science/journal/09658564
http://www.elsevier.com/locate/tra


S. Raveau et al. / Transportation Research Part A 45 (2011) 138–147 139
variable is such that the more indirect is a given route, the higher will be the value of its angular cost variable. If the param-
eter of this variable is found to be statistically significant, the first hypothesis is confirmed. Various definitions and specifi-
cations of route directness and angular cost penalties may be found in Montello (1991), Tversky (1992), Turner (2001),
Conroy-Dalton (2003).

The angular cost of a route is obtained directly from a map of the transit network. Here, however, an important issue
arises, for the network maps published and displayed by transit systems typically incorporate design considerations that
may distort the true geographical coordinates or spatial relationships of the network’s stations. This implies that different
map designs will generate different angular cost values and as a result may vary in their effects on user behaviour. By includ-
ing the angular cost variable we are therefore also attempting to explain how travel decisions are affected by the way alter-
native routes are visually presented to the user.

To test the second hypothesis we need a variable that indicates how knowledgeable users are of a given route. Since this
factor cannot be determined exactly, we will employ a variable measuring the use levels of the different routes as a proxy.
Thus, our model is an endogenous formulation in which the probability of a route choice depends in part on how heavily
used are its constituent segments.

To test the third hypothesis our model includes different variables related with level of service that are not usually in-
cluded in route choice modelling. These variables are related to comfort on the vehicles, facilities on the stations such as
escalators and level of usage, among others. The inclusion of this kind of variables allows the analysis of how the environ-
ment’s characteristics impact the way alternative routes are perceived and, ultimately, the choices.

In the literature there are multiple route choice models based on users’ socioeconomic and demographic characteristics
and their perceptions of route attributes (Daganzo & Sheffi, 1977; Ramming, 2001; Prashker and Bekhor, 2004) such that user
behaviour is determined by perceived costs. However, the attributes included in these models are all tangible and easily jus-
tified as significant factors in a rational individual decision-making process. Furthermore, the data on user characteristics are
normally gathered through user surveys or through network measurements so that the models are completely exogenous.
The result is that the choices they generate display considerable variability, a reflection of the inadequacy of the data incor-
porated by the modeller on the factors affecting users’ route decisions. Needless to say, any additional data that could help
explain this variability would be very welcome.

A possible source of such data is suggested by the well-established fact that transit user decision-making is affected by
psychological considerations such as aesthetics, comfort and travel-time reliability (see Papinski et al., 2009). However, there
are major difficulties inherent in integrating these factors into route choice modelling that stem from: (i) their subjectivity,
given that each user perceives them differently; and (ii) their intangibility, since there is no scale for measuring them.
Although some progress has been made in accommodating these phenomena in mode choice models (Ben-Akiva et al.,
2002; Raveau et al., 2010) their applications in route choice contexts remain limited (Prato et al., 2009b).

In the present study we aim to improve the explanatory and predictive abilities of route choice models by incorporating
variables that capture angular cost and route knowledge level. Our proposed model is a logit multinomial formulation that
explicitly adds these novel explanatory variables to the ones traditionally found in existing designs. It is calibrated with data
from the Santiago Metro system and will be compared to a base model that does not include angular cost, network knowl-
edge or variables related to intangible factors of the level of service. Our conclusions will be that the added variables signif-
icantly improve the ability to explain and predict route choice processes in transit networks.
2. Specification of the model

The Santiago Metro system has a number of origin–destination pairs that can be travelled by more than one feasible
route, as is evident from the map of the network (see Fig. 1a). To test our route choice model, therefore, we empirically ana-
lyze how system users travelling these pairs choose the transfer point or points between their origin and destination sta-
tions. The analysis is based on trips made during the morning (7am–9am) and evening (6pm–8pm) peak hours. During
these periods users take approximately 700,000 trips, 44% of which include transfers.

Trip data were obtained from an origin–destination survey conducted at Metro stations in October 2008. Information was
gathered on the peak-hour trips of 92,800 individuals, or about 12% of all users. Only those whose origin–destination pairs
could have been taken by more than one route are included in our analysis. There were 16,029 such cases, amounting to
about 40% of the individuals surveyed who transferred at some point on their trip.

Two different depictions of the Metro network are given in Fig. 1. The design on the left shows the true topology of the
various stations and lines (georeferenced data) while the one on the right, which is the map actually displayed in the stations
and consulted by users, contains serious distortions both in the actual location of the stations and the distances between
them. This means that users’ angular and geometric perceptions also diverge from the real ones, which may induce them
to choose routes that are not the optimal or lowest cost ones. Though the extent of this distortion has increased with the
considerable growth of the Santiago system over the last decade, it is still a long way from the complexity and high density
of the networks in the major cities of Europe and the United States where the angular and geometric distortions of the dis-
play maps are much more significant (see, for example, the London system maps in Appendix A). The scale of the potential
impact in these systems lends particular significance to the study of how graphical presentations of network information
effect user behaviour.



Fig. 1. Santiago Metro network maps.
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The Santiago Metro network has five lines and 85 stations, 7 of which are transfer points. Of the 7140 possible origin–
destination station pairs, 4985 (70%) require transferring between lines. For 1365 of these there is more than one route that
is ‘‘reasonable,’’ by which we mean a route that was taken by at least one user in our survey database. The origin–destination
pairs with more than one reasonable route are broken down in Table 1 by the number of such routes. Although in the major-
ity of cases the route choice is between just two reasonable alternatives, there are also some pairs for which three and even
four different options were chosen by some of the individuals surveyed. In denser transport networks, both the quantity and
percentage of origin–destination pairs with alternative route possibilities would no doubt rise.
2.1. General description of the model

As just noted, our route choice model is a logit multinomial design in which the user utility function contains the standard
explanatory variables representing network service levels plus additional ones for angular cost and route knowledge levels.
Since the socioeconomic and demographic variables usually included are not relevant for the purposes of this study, they
have been left out of our specification. Nor have we incorporated ticket prices since the Santiago Metro uses a flat-fare sys-
tem. The variables are discussed in detail below.

The base model used for comparison purposes is a restricted or nested formulation containing only traditional service
level variables (that is, without angular cost, route knowledge and variables related to intangible factors of the level of ser-
vice). The estimation of the parameters is performed using the maximum likelihood method.
2.2. Explanatory variables

The standard explanatory variables in our model are in-vehicle travel time from origin to destination, total waiting time at
origin and transfer stations, and the number of transfers for each route alternative as an indicator of additional (walking) time
Table 1
Origin–destination pairs in Santiago Metro with more than one reasonable route alternative.

Observed route alternatives % of O–D pairs % of trips

2 97 93
3 3 7
4 <1 <1
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between platforms and the disutility of changing train lines. No fare variable is included since under the Metro’s flat-fare
policy, user monetary cost is the same regardless of route length or transfers and thus has no effect on route choice.

To strengthen the explanation of line changes provided by the number of transfers reported, three explanatory variables
were added to explicitly represent line-change characteristics: walking time between different train lines, whether or not
platforms are accessed by escalators, and whether or not a given transfer involves an ascending level change. Data for these
variables were collected via a field survey of transfer stations.

Also, since detailed information was available on the load profiles of each Metro line for different times of day, we were
able to include an explanatory variable indicating the average occupancy rate for the different routes. This variable represents
the degree of passenger crowding on train carriages, and indirectly also captures train capacity restrictions and the proba-
bility a user is unable to board the first-arriving train due to overcrowding and has to await the next one (a frequent occur-
rence on the Santiago Metro at peak hours). The variable itself is the average occupancy level (i.e., the ratio of load to
capacity) of the arcs constituting the alternative routes, and is weighted by the route distances. By definition the rate can
vary between 0 (for a train travelling empty along all arcs of a route) and 1 (for a train travelling fully loaded along all arcs).

Two more variables reflecting factors related to extreme occupancy rates at origin and transfer stations are also inte-
grated into the model. If the rate is greater than or equal to 85%, not only is comfort reduced due to the high passenger den-
sity but there is a chance users will be unable to board the first train. If, on the other hand, the rate is less than or equal to 15%,
chances are that users can ride seated. Thus, for the stations where passengers board, the two percentages are the occupancy
rate thresholds at which user satisfaction changes. These particular values were chosen based on two criteria: (i) they reflect
reasonable ranges given the various factors involved; (ii) they provide the best fit of the model to the data. Note also that the
‘‘unable to board’’ and ‘‘ride seated’’ variables are both dummies.

As regards network or route knowledge levels, since the Santiago Metro was developed in various stages over the last few
decades (the oldest line being inaugurated in 1975 while the newest one opened in 2006), familiarity with the different route
possibilities varies considerably and users tend to prefer the ones they know best. In addition, the more a given line is used
the more likely it is to be better known than the others. To incorporate this effect in the proposed model we defined a net-
work knowledge proxy variable that is simply the average passenger volume on each route during peak hours.

As regards the network topology factor, we assume users prefer the most direct routes from origin to destination. To re-
flect this preference, and to facilitate our evaluation of the effects of network map distortions of true route geography on
route choice, we define the angular cost variable for each route as a penalty indicator that must satisfy the following three
characteristics:

1. The penalty is at a minimum for route segments that head directly toward the final trip destination (i.e., the angle with
respect to the destination is 0�), and at a maximum for segments heading in the opposite direction (angle = 180�).

2. Marginal changes at the extremes (0� and 180�) generate small penalty variations whereas a large variation is produced at
the point where a route segment turns toward or away from the destination (this occurs when the angle is 90�).

3. The penalty is angularly symmetric in the sense that if, for example, the angle of a segment is 15�, the penalty is the same
as for an angle of 345�.

A penalty function that has all three of these characteristics is sin(h/2), where h is the angle formed by a straight line from
the initial point of a segment to the final trip destination and another straight line from the initial point of the segment itself.
An example of the estimation of angular cost is given in Fig. 2. The penalty for a segment is weighted by its length to reflect
how far the deviation distances users from their destination. In the case of the two Santiago Metro network maps, note that
the angular costs for the routes as depicted in the true topology version (Fig. 1a) will be different than those for the Metro
display map (Fig. 1b). This factor can therefore be tested separately for the two designs.

One of the characteristics of our angular cost specification is that it is not topologically symmetric. In other words, the
angular cost of travelling from O to D is not the same as for travelling from D to O. This is consistent with the structure
of route choices observed in the Santiago Metro. A dispersion graph of the proportions of route choices in both directions
Fig. 2. Angular cost estimation.



Fig. 3. Asymmetry of user route choices.
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for all O–D pairs with at least 50 observed trips in our survey sample is set out in Fig. 3. For each route between two stations
that has more than one possible route, the graph shows the proportion of outbound (O–D) trips versus that of inbound (D–O)
trips. If user route choices were symmetrical, the points on the graph would tend to be concentrated around the 45� diagonal.
But as can be seen, this is not the case. The absence of topological symmetry is thus consistent with actual user route choices
and is therefore not a shortcoming of the proposed specification.

Finally, and also in relation to network topology and the angular cost concept, we incorporated two dummy variables first
defined by Dial (1971) that capture another relevant aspect of route geometry. The first variable identifies routes with a
transfer station (if any, otherwise the destination) that is closer to the origin than the station immediately before it, creating
the impression of turning back to the origin, while the second one identifies routes that have a transfer station further from
the destination than the station immediately before it, giving the impression of turning away from the destination.
3. Results

Based on the data gathered on route choice in the Santiago Metro network we estimated both our proposed logit multi-
nomial model, built around the complete set of explanatory variables just described, and a base model (which only considers
the standard explanatory variables) for comparison purposes. The sample consisted in route choices of 28,961 users on peak
hour, over 1365 different OD pairs. The number of route alternatives varied from 2 to 4, as presented in Table 1. The results of
the estimation are summarized in Table 2. Note that two versions of the proposed model were solved, one based on angular
cost for a true topological map of the Metro and the other for the distorted display map.

As may be observed, all of the parameter estimates for the proposed models have the right sign and are statistically sig-
nificant at the 95% level. Of particular interest is the result for the network knowledge variable, measured by a route’s aver-
Table 2
Estimates of route choice models, showing parameters and critical values.

Variable Base model Proposed model (true distances) Proposed model (display map distances)

In-vehicle travel time �0.144 (�46.61) �0.119 (�27.94) �0.117 (�27.29)
Waiting time �0.203 (�3.68) �0.111 (�3.17) �0.121 (�3.17)
Walking time – � 0.240 (�7.14) � 0.229 (�6.87)
Number of transfers �1.220 (�17.06) �0.449 (�3.95) �0.420 (�3.69)
Ascending level change – �0.426 (�7.89) �0.432 (�8.02)
No escalators – �0.438 (�11.95) �0.457 (�12.34)
Occupancy rate – �1.430 (�3.53) �1.250 (�3.05)
Unable to board – �0.426 (� 6.00) �0.413 (�6.06)
Ride seated – 0.126 (2.16) 0.106 (1.81)
Network knowledge – 0.031 (7.14) 0.030 (6.81)
Angular cost – � 0.024 (�7.14) �0.038 (�6.75)
Turn back to origin – �0.516 (�10.96) �0.503 (�10.65)
Turn away from destination – �0.505 (�11.43) �0.512 (�11.59)
Sample size 28,961 28,961 28,961
Log-likelihood �7416 �7142 �7136
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age passenger volume, whose effect is positive. This being so we could easily specify an endogenous or fixed-point route
choice model in which the probability of choosing a particular route depends on the number of users choosing it. Such a for-
mulation would be needed for use in making predictions.

Regarding angular cost and the variables on turning back to the origin or away from the destination, the results are more
statistically significant when the proposed model is constructed using the distorted display map distances (Fig. 1b) as op-
posed to the true topological distances (Fig. 1a). This strongly indicates the significance of the way in which route informa-
tion is presented to users. To the extent the display map distortions induce users to choose certain routes over others, this
phenomenon could be exploited to modify the use of certain network lines or route segments.

Another point demonstrated by these results is that the traditional explanatory variables travel time, waiting time and
number of transfers, although certainly important (travel time is the most statistically significant), do not fully explain
the decision-making process. Indeed, the absence of the information represented by the proposed new variables may bias
the parameter estimates of the traditional ones (note the large difference in the waiting time and number of transfers
parameters).

Also confirmed by the results in Table 2 are the two hypotheses stated in Section 1: users perceive an additional cost for
routes that have segments which turn away from the destination, and tend to choose the routes they are most familiar with
or are heavily used by other users.

In light of the foregoing, the inclusion of non-traditional variables is clearly needed. A particular advantage of adding fac-
tors relating to network topology such as those suggested here is that the necessary information is readily obtained at low
cost as part of the usual data-gathering process for building route choice models.

As regards goodness of fit, the proposed model, with 10 more explanatory variables than the base model, delivers a sig-
nificant improvement over the latter of more than 200 points in log-likelihood. This leads us to reject the null hypothesis that
the two specifications are equivalent (2 � 280 = 560 > v2 = 23.2 at 99% confidence with 10 degrees of freedom). The mean
square error, given in Table 3, indicates that the proposed model is also superior to the base model in terms of predictive
ability. The prediction error for both models increases as the number of alternative routes grows, but so do the differences
between them.

To quantify the improvement in predictive ability brought about by the new variables in the proposed model, we ana-
lyzed the route choices between a group of 11 stations on a single line of the Santiago Metro and another group of nine sta-
tions on a different line (this is, a set of 198 O–D pairs). According to our data, trips taken between the two groups during
peak hours numbered some 7300 and followed four different route patterns (see Fig. 4). This example is particularly suitable
for our purposes because the four routes use all seven transfer stations in the Metro network and can be clearly described in
topological terms, which are given below:

1. Route 2 is the most direct route and has no segment that turns back to the origin or away from the destination.
2. Route 1 has the highest angular cost on certain segments, especially between transfer stations 1 and 2. However, the seg-

ment between transfer station 2 and the destination is relatively direct.
3. Routes 3 and 4 are less direct and require transferring at stations far from the destination. However, they have lower

occupancy rates, particularly Route 3, and Route 4 is the fastest one to arrive at the destination line (but not necessarily
the fastest one to arrive at the destination station).

4. Routes 1 and 2 both pass through transfer stations 1 and 3. On Route 2 the section between those two stations is direct
but the occupancy rate is the highest of any part of the network. On Route 1 that leg is made through transfer station 2,
but the occupancy rate is lower and there are fewer intermediate stations (i.e., lower travel time).

The trip assignment results for our application example are summarized in Table 4, showing: (i) the observed route
choices, (ii) the route choices predicted by the base model, (iii) the route choices predicted by the proposed model, and
(iv) the minimum-time assignments (an all-or-nothing loading in terms of travel, waiting and walking times). Note that
the minimum-time assignments do not assign the entire flow to a single route. This occurs because train frequencies during
the peak periods for the different routes vary and no single route is always the fastest for all of the O–D pairs.

As can be seen in Table 4, Route 2, the most direct route, is generally the fastest and therefore the most frequently used.
Nevertheless, the trips assigned to Route 2 in the proposed model are fewer than those assigned considering minimum time
due to a high occupancy rate, which is perceived as a negative attribute. Route 1, though faster than Route 4, is used con-
siderably less frequently, because the segment between transfer stations 1 and 2 has a high angular penalty and turns away
Table 3
Mean square error, route choice models.

Origin–destination pairs Base model Proposed model

All 13.3 10.9
With 2 routes 7.9 6.7
With 3 routes 20.0 10.7
With 4 routes 27.8 15.9



Fig. 4. Model application example.

Table 4
Trip assignment for application example.

Assignment Route 1 Route 2 Route 3 Route 4

Observed trips 99 5362 30 1854
Minimum time 668 6676 0 0
Base model 361 3884 33 3067
Proposed model 270 4446 25 2603

Table 5
Marginal rates of time substitution.

Variable Base model Proposed model

In-vehicle travel time 1.00 (base) 1.00 (base)
Waiting time 1.41 1.07
Walking time – 1.79

144 S. Raveau et al. / Transportation Research Part A 45 (2011) 138–147
from the destination. The proposed model generates an assignment that is closer to the observed trips than that of the base
model, thus demonstrating the proposed model’s superior predictive ability.

Although our model does not produce monetary valuations for the various attributes (e.g., the subjective value of time)
given that no cost variable was included due to the Metro’s flat-fare system, marginal rates of substitution between the var-
ious time factors can be derived using the in-vehicle travel time as the baseline. The values so obtained are presented in
Table 5.

Waiting time in the base model is 41% more highly valued than in-vehicle travel time whereas in the proposed model, the
two variables are similarly valued statistically. In the case of walking time, not included in the base model, the proposed
model values it 79% more than in-vehicle travel time. Also notable is that the waiting time value from the base model is close
to the average of the walking time and waiting time values from the proposed model. The explanation for this last result may
be that in the base model the waiting time value captures part of the walking time effect, reflecting the fact that the two
variables are correlated since they are both directly related to, and simultaneously increased by, transferring. As a result,
the base model parameters are biased due to the absence of significant variables that are incorporated in the proposed
model.

As for transfers, the base model can only generate a single value of 8.5 travel minutes per transfer. In the proposed model,
however, the components associated with this factor are disaggregated and values vary depending on the transfer station.
The valuation for walking time between line platforms was given in Table 5 while the valuations for the specific station char-
acteristics are indicated in Table 6. The valuation the different transfer cases is obtained by considering all the parameters
related to each scenario (i.e. the base parameter associated to transfer and the marginal parameters associated to the pos-
sibilities of boarding or getting a seat, the possibility of using escalators and the possibility of descend/ascend when trans-



Table 6
Transfer valuations by transfer station characteristic.

Characteristic Without escalators With escalators

Chance of riding seated (occupancy 6 15%) Descending 2.7 min of travel 6.6 min of travel
Ascending 6.4 min of travel 10.3 min of travel

Intermediate (15% < occupancy < 85%) Descending 3.6 min of travel 7.5 min of travel
Ascending 7.3 min of travel 11.2 min of travel

Chance of being unable to board (occupancy P 85%) Descending 7.9 min of travel 11.2 min of travel
Ascending 11.0 min of travel 14.9 min of travel
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ferring). These figures can be interpreted as the additional travel time users will accept to avoid a transfer. Due to its omis-
sion of significant information the base model delivers an average transfer value that does not resemble any of the 12 pos-
sible cases valuated by the proposed model.

Finally, many public transit systems experience serious problems of congestion during peak periods and the Santiago Me-
tro is no exception, exhibiting high load factors during the hours of heaviest use over much of the network. As has been dem-
onstrated, the way in which map-based network information is presented to users can induce them to change their route
choice behaviour. Such changes can be positive, tending to decongest overloaded lines, or negative, overloading them even
further. The design of graphic information displays is thus an important issue that must be handled carefully in order to en-
sure the effects on user behaviour are the desirable ones.

4. Conclusions

Route choice modelling is traditionally based only on tangible explanatory variables. However, the perceptions of trans-
port users regarding available route alternatives are such that they do not always choose what the modeller would consider
as the ‘‘lowest cost’’ option. In this study we have demonstrated and quantified the influence of non-traditional factors that
also impact individual user decision-making. Specifying certain aspects of the trip environment (e.g., passenger densities and
the physical characteristics of Metro stations) is also shown to improve the explanation of route choices.

Among the non-traditional variables incorporated in our proposed model are a number that relate to the topology of the
transit network, representing the angular cost (i.e., directness) of the various route alternatives and their geometry (whether
a segment turns back to the origin or away from the destination). One of the main advantages of adding these factors is the
low cost of collecting the corresponding data. Other novel variables included in our specification express user knowledge of
the network’s route alternatives.

The results generated by our model lead us to conclude that when the non-traditional variables are absent the estimated
parameters are biased. This is manifested in inaccurate marginal rates of substitution and route choice models with insuf-
ficient explanatory and predictive abilities. It is therefore highly recommendable that field surveys be undertaken of net-
works’ physical characteristics (e.g., certain aspects of Metro stations) and operating features (e.g., user information) in
order to obtain the data necessary for specifying these proposed new variables in route choice formulations that will produce
more accurate estimators and better predictions.

Finally, we have shown that the way in which network information aimed at users of a transit system is presented can
influence their decision-making. Distortions in the representation of a network’s geographical relationships can induce trip
assignments that reduce service levels for all users. At the same time, these distortions can be exploited to induce optimal
trip assignments and thereby making the best use of transport system capacity.

In judging our findings it should also be recalled that the Santiago Metro is a small network with relatively few route
alternatives for any given origin–destination pair compared to the systems of major cities such as London, New York or Ma-
drid. The results in Table 3 show that as the number of alternative routes grows, the proposed model improves significantly
compared to a standard route choice model without the additional variables introduced in this study. The superior predictive
ability of our formulation should therefore be even more apparent with denser networks. The distortion of the true spatial
relationships by the Santiago network’s display map, though by no means negligible, is not overly significant. For large and
highly complex networks with many route alternatives, however, the distortions in these user information maps would take
on considerable importance. Our findings could assist in orienting the design considerations for the maps these systems pub-
lish in order to induce socially optimal behaviour in their users.

A natural extension of the work presented here would be to use the proposed model for making predictions. This would
require solving the fixed-point problem given that the variables relating to network knowledge and occupancy rates are
endogenous to the modelling process.
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Appendix A. London underground network maps

See Figs. A.1 and A.2.
Fig. A.1. Display map of the London underground.

Fig. A.2. True topological map of the London underground.
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